Serveur d'exploration sur les récepteurs immunitaires végétaux

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The crystal structure of Arabidopsis BON1 provides insights into the copine protein family.

Identifieur interne : 000025 ( Main/Exploration ); précédent : 000024; suivant : 000026

The crystal structure of Arabidopsis BON1 provides insights into the copine protein family.

Auteurs : Qianchao Wang [République populaire de Chine] ; Meiqin Jiang [République populaire de Chine] ; Michail N. Isupov [Royaume-Uni] ; Yayu Chen [République populaire de Chine] ; Jennifer A. Littlechild [Royaume-Uni] ; Lifang Sun [République populaire de Chine] ; Xiuling Wu [République populaire de Chine] ; Qin Wang [République populaire de Chine] ; Wendi Yang [République populaire de Chine] ; Lifei Chen [République populaire de Chine] ; Qi Li [République populaire de Chine] ; Yunkun Wu [République populaire de Chine]

Source :

RBID : pubmed:32369638

Abstract

The Arabidopsis thaliana BON1 gene product is a member of the evolutionary conserved eukaryotic calcium-dependent membrane-binding protein family. The copine protein is composed of two C2 domains (C2A and C2B) followed by a vWA domain. The BON1 protein is localized on the plasma membrane, and is known to suppress the expression of immune receptor genes and to positively regulate stomatal closure. The first structure of this protein family has been determined to 2.5-Å resolution and shows the structural features of the three conserved domains C2A, C2B and vWA. The structure reveals the third Ca2+ -binding region in C2A domain is longer than classical C2 domains and a novel Ca2+ binding site in the vWA domain. The structure of BON1 bound to Mn2+ is also presented. The binding of the C2 domains to phospholipid (PSF) has been modeled and provides an insight into the lipid-binding mechanism of the copine proteins. Furthermore, the selectivity of the separate C2A and C2B domains and intact BON1 to bind to different phospholipids has been investigated, and we demonstrated that BON1 could mediate aggregation of liposomes in response to Ca2+ . These studies have formed the basis of further investigations into the important role that the copine proteins play in vivo.

DOI: 10.1111/tpj.14797
PubMed: 32369638


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The crystal structure of Arabidopsis BON1 provides insights into the copine protein family.</title>
<author>
<name sortKey="Wang, Qianchao" sort="Wang, Qianchao" uniqKey="Wang Q" first="Qianchao" last="Wang">Qianchao Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, 350002, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, 350002</wicri:regionArea>
<wicri:noRegion>350002</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>University of Chinese Academy of Sciences, Beijing, 100049</wicri:regionArea>
<wicri:noRegion>100049</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Meiqin" sort="Jiang, Meiqin" uniqKey="Jiang M" first="Meiqin" last="Jiang">Meiqin Jiang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, 350002, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, 350002</wicri:regionArea>
<wicri:noRegion>350002</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>University of Chinese Academy of Sciences, Beijing, 100049</wicri:regionArea>
<wicri:noRegion>100049</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Isupov, Michail N" sort="Isupov, Michail N" uniqKey="Isupov M" first="Michail N" last="Isupov">Michail N. Isupov</name>
<affiliation wicri:level="1">
<nlm:affiliation>Henry Wellcome Center for Biocatalysis, Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Henry Wellcome Center for Biocatalysis, Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD</wicri:regionArea>
<wicri:noRegion>EX4 4QD</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Yayu" sort="Chen, Yayu" uniqKey="Chen Y" first="Yayu" last="Chen">Yayu Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, 350117, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, 350117</wicri:regionArea>
<wicri:noRegion>350117</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Littlechild, Jennifer A" sort="Littlechild, Jennifer A" uniqKey="Littlechild J" first="Jennifer A" last="Littlechild">Jennifer A. Littlechild</name>
<affiliation wicri:level="1">
<nlm:affiliation>Henry Wellcome Center for Biocatalysis, Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Henry Wellcome Center for Biocatalysis, Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD</wicri:regionArea>
<wicri:noRegion>EX4 4QD</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sun, Lifang" sort="Sun, Lifang" uniqKey="Sun L" first="Lifang" last="Sun">Lifang Sun</name>
<affiliation wicri:level="1">
<nlm:affiliation>Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, 350117, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, 350117</wicri:regionArea>
<wicri:noRegion>350117</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wu, Xiuling" sort="Wu, Xiuling" uniqKey="Wu X" first="Xiuling" last="Wu">Xiuling Wu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, 350002, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, 350002</wicri:regionArea>
<wicri:noRegion>350002</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>University of Chinese Academy of Sciences, Beijing, 100049</wicri:regionArea>
<wicri:noRegion>100049</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Qin" sort="Wang, Qin" uniqKey="Wang Q" first="Qin" last="Wang">Qin Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, 350002, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, 350002</wicri:regionArea>
<wicri:noRegion>350002</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>University of Chinese Academy of Sciences, Beijing, 100049</wicri:regionArea>
<wicri:noRegion>100049</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yang, Wendi" sort="Yang, Wendi" uniqKey="Yang W" first="Wendi" last="Yang">Wendi Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, 350117, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, 350117</wicri:regionArea>
<wicri:noRegion>350117</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Lifei" sort="Chen, Lifei" uniqKey="Chen L" first="Lifei" last="Chen">Lifei Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, 350117, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, 350117</wicri:regionArea>
<wicri:noRegion>350117</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Qi" sort="Li, Qi" uniqKey="Li Q" first="Qi" last="Li">Qi Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433</wicri:regionArea>
<wicri:noRegion>200433</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wu, Yunkun" sort="Wu, Yunkun" uniqKey="Wu Y" first="Yunkun" last="Wu">Yunkun Wu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, 350117, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, 350117</wicri:regionArea>
<wicri:noRegion>350117</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32369638</idno>
<idno type="pmid">32369638</idno>
<idno type="doi">10.1111/tpj.14797</idno>
<idno type="wicri:Area/Main/Corpus">000142</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000142</idno>
<idno type="wicri:Area/Main/Curation">000142</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000142</idno>
<idno type="wicri:Area/Main/Exploration">000142</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The crystal structure of Arabidopsis BON1 provides insights into the copine protein family.</title>
<author>
<name sortKey="Wang, Qianchao" sort="Wang, Qianchao" uniqKey="Wang Q" first="Qianchao" last="Wang">Qianchao Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, 350002, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, 350002</wicri:regionArea>
<wicri:noRegion>350002</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>University of Chinese Academy of Sciences, Beijing, 100049</wicri:regionArea>
<wicri:noRegion>100049</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Meiqin" sort="Jiang, Meiqin" uniqKey="Jiang M" first="Meiqin" last="Jiang">Meiqin Jiang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, 350002, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, 350002</wicri:regionArea>
<wicri:noRegion>350002</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>University of Chinese Academy of Sciences, Beijing, 100049</wicri:regionArea>
<wicri:noRegion>100049</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Isupov, Michail N" sort="Isupov, Michail N" uniqKey="Isupov M" first="Michail N" last="Isupov">Michail N. Isupov</name>
<affiliation wicri:level="1">
<nlm:affiliation>Henry Wellcome Center for Biocatalysis, Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Henry Wellcome Center for Biocatalysis, Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD</wicri:regionArea>
<wicri:noRegion>EX4 4QD</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Yayu" sort="Chen, Yayu" uniqKey="Chen Y" first="Yayu" last="Chen">Yayu Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, 350117, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, 350117</wicri:regionArea>
<wicri:noRegion>350117</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Littlechild, Jennifer A" sort="Littlechild, Jennifer A" uniqKey="Littlechild J" first="Jennifer A" last="Littlechild">Jennifer A. Littlechild</name>
<affiliation wicri:level="1">
<nlm:affiliation>Henry Wellcome Center for Biocatalysis, Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Henry Wellcome Center for Biocatalysis, Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD</wicri:regionArea>
<wicri:noRegion>EX4 4QD</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sun, Lifang" sort="Sun, Lifang" uniqKey="Sun L" first="Lifang" last="Sun">Lifang Sun</name>
<affiliation wicri:level="1">
<nlm:affiliation>Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, 350117, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, 350117</wicri:regionArea>
<wicri:noRegion>350117</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wu, Xiuling" sort="Wu, Xiuling" uniqKey="Wu X" first="Xiuling" last="Wu">Xiuling Wu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, 350002, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, 350002</wicri:regionArea>
<wicri:noRegion>350002</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>University of Chinese Academy of Sciences, Beijing, 100049</wicri:regionArea>
<wicri:noRegion>100049</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Qin" sort="Wang, Qin" uniqKey="Wang Q" first="Qin" last="Wang">Qin Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, 350002, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, 350002</wicri:regionArea>
<wicri:noRegion>350002</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>University of Chinese Academy of Sciences, Beijing, 100049</wicri:regionArea>
<wicri:noRegion>100049</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yang, Wendi" sort="Yang, Wendi" uniqKey="Yang W" first="Wendi" last="Yang">Wendi Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, 350117, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, 350117</wicri:regionArea>
<wicri:noRegion>350117</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Lifei" sort="Chen, Lifei" uniqKey="Chen L" first="Lifei" last="Chen">Lifei Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, 350117, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, 350117</wicri:regionArea>
<wicri:noRegion>350117</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Qi" sort="Li, Qi" uniqKey="Li Q" first="Qi" last="Li">Qi Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433</wicri:regionArea>
<wicri:noRegion>200433</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wu, Yunkun" sort="Wu, Yunkun" uniqKey="Wu Y" first="Yunkun" last="Wu">Yunkun Wu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, 350117, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, 350117</wicri:regionArea>
<wicri:noRegion>350117</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Plant journal : for cell and molecular biology</title>
<idno type="eISSN">1365-313X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The Arabidopsis thaliana BON1 gene product is a member of the evolutionary conserved eukaryotic calcium-dependent membrane-binding protein family. The copine protein is composed of two C2 domains (C2A and C2B) followed by a vWA domain. The BON1 protein is localized on the plasma membrane, and is known to suppress the expression of immune receptor genes and to positively regulate stomatal closure. The first structure of this protein family has been determined to 2.5-Å resolution and shows the structural features of the three conserved domains C2A, C2B and vWA. The structure reveals the third Ca
<sup>2+</sup>
-binding region in C2A domain is longer than classical C2 domains and a novel Ca
<sup>2+</sup>
binding site in the vWA domain. The structure of BON1 bound to Mn
<sup>2+</sup>
is also presented. The binding of the C2 domains to phospholipid (PSF) has been modeled and provides an insight into the lipid-binding mechanism of the copine proteins. Furthermore, the selectivity of the separate C2A and C2B domains and intact BON1 to bind to different phospholipids has been investigated, and we demonstrated that BON1 could mediate aggregation of liposomes in response to Ca
<sup>2+</sup>
. These studies have formed the basis of further investigations into the important role that the copine proteins play in vivo.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32369638</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>03</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-313X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>103</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2020</Year>
<Month>08</Month>
</PubDate>
</JournalIssue>
<Title>The Plant journal : for cell and molecular biology</Title>
<ISOAbbreviation>Plant J</ISOAbbreviation>
</Journal>
<ArticleTitle>The crystal structure of Arabidopsis BON1 provides insights into the copine protein family.</ArticleTitle>
<Pagination>
<MedlinePgn>1215-1232</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/tpj.14797</ELocationID>
<Abstract>
<AbstractText>The Arabidopsis thaliana BON1 gene product is a member of the evolutionary conserved eukaryotic calcium-dependent membrane-binding protein family. The copine protein is composed of two C2 domains (C2A and C2B) followed by a vWA domain. The BON1 protein is localized on the plasma membrane, and is known to suppress the expression of immune receptor genes and to positively regulate stomatal closure. The first structure of this protein family has been determined to 2.5-Å resolution and shows the structural features of the three conserved domains C2A, C2B and vWA. The structure reveals the third Ca
<sup>2+</sup>
-binding region in C2A domain is longer than classical C2 domains and a novel Ca
<sup>2+</sup>
binding site in the vWA domain. The structure of BON1 bound to Mn
<sup>2+</sup>
is also presented. The binding of the C2 domains to phospholipid (PSF) has been modeled and provides an insight into the lipid-binding mechanism of the copine proteins. Furthermore, the selectivity of the separate C2A and C2B domains and intact BON1 to bind to different phospholipids has been investigated, and we demonstrated that BON1 could mediate aggregation of liposomes in response to Ca
<sup>2+</sup>
. These studies have formed the basis of further investigations into the important role that the copine proteins play in vivo.</AbstractText>
<CopyrightInformation>© 2020 Society for Experimental Biology and John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Qianchao</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, 350002, P. R. China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Meiqin</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, 350002, P. R. China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Isupov</LastName>
<ForeName>Michail N</ForeName>
<Initials>MN</Initials>
<AffiliationInfo>
<Affiliation>Henry Wellcome Center for Biocatalysis, Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Yayu</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, 350117, P. R. China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Littlechild</LastName>
<ForeName>Jennifer A</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Henry Wellcome Center for Biocatalysis, Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Lifang</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, 350117, P. R. China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Xiuling</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, 350002, P. R. China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Qin</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, 350002, P. R. China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Wendi</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, 350117, P. R. China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Lifei</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, 350117, P. R. China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Qi</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, P. R. China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Yunkun</ForeName>
<Initials>Y</Initials>
<Identifier Source="ORCID">0000-0002-1213-4570</Identifier>
<AffiliationInfo>
<Affiliation>Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, 350117, P. R. China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>06</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Plant J</MedlineTA>
<NlmUniqueID>9207397</NlmUniqueID>
<ISSNLinking>0960-7412</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">BON1</Keyword>
<Keyword MajorTopicYN="Y">C2 domain</Keyword>
<Keyword MajorTopicYN="Y">X-ray structure</Keyword>
<Keyword MajorTopicYN="Y">copines</Keyword>
<Keyword MajorTopicYN="Y">membrane</Keyword>
<Keyword MajorTopicYN="Y">phospholipid</Keyword>
<Keyword MajorTopicYN="Y">vWA domain</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>12</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>03</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>04</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>5</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>5</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32369638</ArticleId>
<ArticleId IdType="doi">10.1111/tpj.14797</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Adams, P.D., Afonine, P.V., Bunkoczi, G. et al. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213-221.</Citation>
</Reference>
<Reference>
<Citation>Arac, D., Chen, X., Khant, H.A., Ubach, J., Ludtke, S.J., Kikkawa, M., Johnson, A.E., Chiu, W., Sudhof, T.C. and Rizo, J. (2006) Close membrane-membrane proximity induced by Ca(2+)-dependent multivalent binding of synaptotagmin-1 to phospholipids. Nat. Struct. Mol. Biol. 13, 209-217.</Citation>
</Reference>
<Reference>
<Citation>Bai, J.H., Wang, P. and Chapman, E.R. (2002) C2A activates a cryptic Ca2+-triggered membrane penetration activity within the C2B domain of synaptotagmin I. Proc. Natl Acad. Sci. USA, 99, 1665-1670.</Citation>
</Reference>
<Reference>
<Citation>Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A. and Haak, J.R. (1984) Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684-3690.</Citation>
</Reference>
<Reference>
<Citation>Brose, N., Hofmann, K., Hata, Y. and Sudhof, T.C. (1995) Mammalian homologues of Caenorhabditis elegans unc-13 gene define novel family of C2-domain proteins. J. Biol. Chem. 270, 25 273-25 280.</Citation>
</Reference>
<Reference>
<Citation>Brown, K.L., Banerjee, S., Feigley, A., Abe, H., Blackwell, T.S., Pozzi, A., Hudson, B.G. and Zent, R. (2018) Salt-bridge modulates differential calcium-mediated ligand binding to integrin alpha1- and alpha2-I domains. Sci. Rep. 8, 2916.</Citation>
</Reference>
<Reference>
<Citation>Caudell, E.G., Caudell, J.J., Tang, C.H., Yu, T.K., Frederick, M.J. and Grimm, E.A. (2000) Characterization of human copine III as a phosphoprotein with associated kinase activity. Biochemistry, 39, 13 034-13 043.</Citation>
</Reference>
<Reference>
<Citation>Chen, J., Salas, A. and Springer, T.A. (2003) Bistable regulation of integrin adhesiveness by a bipolar metal ion cluster. Nat. Struct. Biol. 10, 995-1001.</Citation>
</Reference>
<Reference>
<Citation>Cho, W., Bittova, L. and Stahelin, R.V. (2001) Membrane binding assays for peripheral proteins. Anal. Biochem. 296, 153-161.</Citation>
</Reference>
<Reference>
<Citation>Cho, W. and Stahelin, R.V. (2006) Membrane binding and subcellular targeting of C2 domains. Biochim. Biophys. Acta, 1761, 838-849.</Citation>
</Reference>
<Reference>
<Citation>Clement, M., Leonhardt, N., Droillard, M.J., Reiter, I., Montillet, J.L., Genty, B., Lauriere, C., Nussaume, L. and Noel, L.D. (2011) The cytosolic/nuclear HSC70 and HSP90 molecular chaperones are important for stomatal closure and modulate abscisic acid-dependent physiological responses in Arabidopsis. Plant Physiol. 156, 1481-1492.</Citation>
</Reference>
<Reference>
<Citation>Corbalan-Garcia, S. and Gomez-Fernandez, J.C. (2014) Signaling through C2 domains: more than one lipid target. Biochim. Biophys. Acta, 1838, 1536-1547.</Citation>
</Reference>
<Reference>
<Citation>Coudevylle, N., Montaville, P., Leonov, A., Zweckstetter, M. and Becker, S. (2008) Structural determinants for Ca2+ and phosphatidylinositol 4,5-bisphosphate binding by the C2A domain of rabphilin-3A. J. Biol. Chem. 283, 35 918-35 928.</Citation>
</Reference>
<Reference>
<Citation>Cowtan, K. (2010) Recent developments in classical density modification. Acta Crystallogr. D Biol. Crystallogr. 66, 470-478.</Citation>
</Reference>
<Reference>
<Citation>Creutz, C.E. and Edwardson, J.M. (2009) Organization and synergistic binding of copine I and annexin A1 on supported lipid bilayers observed by atomic force microscopy. Biochim. Biophys. Acta, 1788, 1950-1961.</Citation>
</Reference>
<Reference>
<Citation>Creutz, C.E., Tomsig, J.L., Snyder, S.L., Gautier, M.C., Skouri, F., Beisson, J. and Cohen, J. (1998) The copines, a novel class of C2 domain-containing, calcium-dependent, phospholipid-binding proteins conserved from Paramecium to humans. J. Biol. Chem. 273, 1393-1402.</Citation>
</Reference>
<Reference>
<Citation>Damer, C.K., Bayeva, M., Hahn, E.S., Rivera, J. and Socec, C.I. (2005) Copine A, a calcium-dependent membrane-binding protein, transiently localizes to the plasma membrane and intracellular vacuoles in Dictyostelium. BMC Cell Biol. 6, 46.</Citation>
</Reference>
<Reference>
<Citation>Damer, C.K., Bayeva, M., Kim, P.S., Ho, L.K., Eberhardt, E.S., Socec, C.I., Lee, J.S., Bruce, E.A., Goldman-Yassen, A.E. and Naliboff, L.C. (2007) Copine A is required for cytokinesis, contractile vacuole function, and development in Dictyostelium. Eukaryot. Cell, 6, 430-442.</Citation>
</Reference>
<Reference>
<Citation>Damer, C.K. and Creutz, C.E. (1994) Synergistic membrane interactions of the two C2 domains of synaptotagmin. J. Biol. Chem. 269, 31 115-31 123.</Citation>
</Reference>
<Reference>
<Citation>Diaz, M., Sanchez-Barrena, M.J., Gonzalez-Rubio, J.M. et al. (2016) Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling. Proc. Natl Acad. Sci. USA, 113, E396-E405.</Citation>
</Reference>
<Reference>
<Citation>Earles, C.A., Bai, J., Wang, P. and Chapman, E.R. (2001) The tandem C2 domains of synaptotagmin contain redundant Ca2+ binding sites that cooperate to engage t-SNAREs and trigger exocytosis. J. Cell Biol. 154, 1117-1123.</Citation>
</Reference>
<Reference>
<Citation>Emsley, P., Lohkamp, B., Scott, W.G. and Cowtan, K. (2010) Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486-501.</Citation>
</Reference>
<Reference>
<Citation>Fischer, T., Lu, L., Haigler, H.T. and Langen, R. (2007) Annexin B12 is a sensor of membrane curvature and undergoes major curvature-dependent structural changes. J. Biol. Chem. 282, 9996-10 004.</Citation>
</Reference>
<Reference>
<Citation>Garcia, J., Gerber, S.H., Sugita, S., Sudhof, T.C. and Rizo, J. (2004) A conformational switch in the Piccolo C2A domain regulated by alternative splicing. Nat. Struct. Mol. Biol. 11, 45-53.</Citation>
</Reference>
<Reference>
<Citation>Genheden, S. and Ryde, U. (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Dis. 10, 449-461.</Citation>
</Reference>
<Reference>
<Citation>Gou, M., Zhang, Z., Zhang, N., Huang, Q., Monaghan, J., Yang, H., Shi, Z., Zipfel, C. and Hua, J. (2015) Opposing effects on two phases of defense responses from concerted actions of HEAT SHOCK COGNATE70 and BONZAI1 in Arabidopsis. Plant Physiol. 169, 2304-2323.</Citation>
</Reference>
<Reference>
<Citation>Grushin, K., Wang, J., Coleman, J., Rothman, J.E., Sindelar, C.V. and Krishnakumar, S.S. (2019) Structural basis for the clamping and Ca(2+) activation of SNARE-mediated fusion by synaptotagmin. Nat. Commun. 10, 2413.</Citation>
</Reference>
<Reference>
<Citation>Guillen, J., Ferrer-Orta, C., Buxaderas, M. et al. (2013) Structural insights into the Ca2+ and PI(4,5)P2 binding modes of the C2 domains of rabphilin 3A and synaptotagmin 1. Proc. Natl Acad. Sci. USA, 110, 20 503-20 508.</Citation>
</Reference>
<Reference>
<Citation>Thompson, G.A. and Okuyama, H. (2000) Lipid-linked proteins of plants. Prog. Lipid Res. 39(1), 19-39.</Citation>
</Reference>
<Reference>
<Citation>Hanukoglu, I. (2015) Proteopedia: Rossmann fold: a beta-alpha-beta fold at dinucleotide binding sites. Biochem. Mol. Biol. Educ. 43, 206-209.</Citation>
</Reference>
<Reference>
<Citation>Hayes, J.M., Skamnaki, V.T., Archontis, G., Lamprakis, C., Sarrou, J., Bischler, N., Skaltsounis, A.L., Zographos, S.E. and Oikonomakos, N.G. (2011) Kinetics, in silico docking, molecular dynamics, and MM-GBSA binding studies on prototype indirubins, KT5720, and staurosporine as phosphorylase kinase ATP-binding site inhibitors: the role of water molecules examined. Proteins, 79, 703-719.</Citation>
</Reference>
<Reference>
<Citation>Hess, B. (2008) P-LINCS: a parallel linear constraint solver for molecular simulation. J. Chem. Theory Comput. 4, 116-122.</Citation>
</Reference>
<Reference>
<Citation>Hoover, W.G. (1985) Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A, 31, 1695-1697.</Citation>
</Reference>
<Reference>
<Citation>Hua, J., Grisafi, P., Cheng, S.H. and Fink, G.R. (2001) Plant growth homeostasis is controlled by the Arabidopsis BON1 and BAP1 genes. Genes Dev. 15, 2263-2272.</Citation>
</Reference>
<Reference>
<Citation>Hui, E., Gaffaney, J.D., Wang, Z., Johnson, C.P., Evans, C.S. and Chapman, E.R. (2011) Mechanism and function of synaptotagmin-mediated membrane apposition. Nat. Struct. Mol. Biol. 18, 813-821.</Citation>
</Reference>
<Reference>
<Citation>Ilacqua, A.N., Price, J.E., Graham, B.N., Buccilli, M.J., McKellar, D.R. and Damer, C.K. (2018) Cyclic AMP signaling in Dictyostelium promotes the translocation of the copine family of calcium-binding proteins to the plasma membrane. BMC Cell Biol. 19, 13.</Citation>
</Reference>
<Reference>
<Citation>Jambunathan, N., Siani, J.M. and McNellis, T.W. (2001) A humidity-sensitive Arabidopsis copine mutant exhibits precocious cell death and increased disease resistance. Plant Cell, 13, 2225-2240.</Citation>
</Reference>
<Reference>
<Citation>Kabsch, W. (2010) Xds. Acta Crystallogr. D Biol. Crystallogr. 66, 125-132.</Citation>
</Reference>
<Reference>
<Citation>Karplus, P.A. and Diederichs, K. (2012) Linking crystallographic model and data quality. Science, 336, 1030-1033.</Citation>
</Reference>
<Reference>
<Citation>Essen, L.-O., Perisic, O., Cheung, R., Katan, M. and Williams, R.L. (1996) Crystal structure of a mammalian phosphoinositide-specific phospholipase Cδ. Nature, 380(6575), 595-602.</Citation>
</Reference>
<Reference>
<Citation>Lee, J.O., Rieu, P., Arnaout, M.A. and Liddington, R. (1995) Crystal structure of the A domain from the alpha subunit of integrin CR3 (CD11b/CD18). Cell, 80, 631-638.</Citation>
</Reference>
<Reference>
<Citation>Lee, T.F. and McNellis, T.W. (2009) Evidence that the BONZAI1/COPINE1 protein is a calcium- and pathogen-responsive defense suppressor. Plant Mol. Biol. 69, 155-166.</Citation>
</Reference>
<Reference>
<Citation>Leitinger, B., McDowall, A., Stanley, P. and Hogg, N. (2000) The regulation of integrin function by Ca(2+). Biochim. Biophys. Acta, 1498, 91-98.</Citation>
</Reference>
<Reference>
<Citation>Li, Y., Gou, M., Sun, Q. and Hua, J. (2010) Requirement of calcium binding, myristoylation, and protein-protein interaction for the Copine BON1 function in Arabidopsis. J. Biol. Chem. 285, 29 884-29 891.</Citation>
</Reference>
<Reference>
<Citation>Liu, J., Jambunathan, N. and McNellis, T.W. (2005) Transgenic expression of the von Willebrand A domain of the BONZAI 1/COPINE 1 protein triggers a lesion-mimic phenotype in Arabidopsis. Planta, 221, 85-94.</Citation>
</Reference>
<Reference>
<Citation>Luo, B.H., Carman, C.V. and Springer, T.A. (2007) Structural basis of integrin regulation and signaling. Annu. Rev. Immunol. 25, 619-647.</Citation>
</Reference>
<Reference>
<Citation>McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C. and Read, R.J. (2007) Phaser crystallographic software. J. Appl. Crystallogr. 40, 658-674.</Citation>
</Reference>
<Reference>
<Citation>Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K. and Olson, A.J. (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 19, 1639-1662.</Citation>
</Reference>
<Reference>
<Citation>Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S. and Olson, A.J. (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785-2791.</Citation>
</Reference>
<Reference>
<Citation>Mould, A.P., Barton, S.J., Askari, J.A., Craig, S.E. and Humphries, M.J. (2003) Role of ADMIDAS cation-binding site in ligand recognition by integrin alpha 5 beta 1. J. Biol. Chem. 278, 51 622-51 629.</Citation>
</Reference>
<Reference>
<Citation>Murshudov, G.N., Skubak, P., Lebedev, A.A., Pannu, N.S., Steiner, R.A., Nicholls, R.A., Winn, M.D., Long, F. and Vagin, A.A. (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67, 355-367.</Citation>
</Reference>
<Reference>
<Citation>Nakayama, T., Yaoi, T. and Kuwajima, G. (1999a) Localization and subcellular distribution of N-copine in mouse brain. J. Neurochem. 72, 373-379.</Citation>
</Reference>
<Reference>
<Citation>Nakayama, T., Yaoi, T., Kuwajima, G., Yoshie, O. and Sakata, T. (1999b) Ca2+-dependent interaction of N-copine, a member of the two C2 domain protein family, with OS-9, the product of a gene frequently amplified in osteosarcoma. FEBS Lett. 453, 77-80.</Citation>
</Reference>
<Reference>
<Citation>Nalefski, E.A. and Falke, J.J. (1996) The C2 domain calcium-binding motif: structural and functional diversity. Protein Sci. 5, 2375-2390.</Citation>
</Reference>
<Reference>
<Citation>Nalefski, E.A., Wisner, M.A., Chen, J.Z., Sprang, S.R., Fukuda, M., Mikoshiba, K. and Falke, J.J. (2001) C2 domains from different Ca2+ signaling pathways display functional and mechanistic diversity. Biochemistry, 40, 3089-3100.</Citation>
</Reference>
<Reference>
<Citation>Ochoa, W.F., Corbalán-Garcia, S., Eritja, R., Rodrı́guez-Alfaro, J.A., Gómez-Fernández, J.C., Fita, I. and Verdaguer, N. (2002) Additional binding sites for anionic phospholipids and calcium ions in the crystal structures of complexes of the C2 domain of protein kinase Cα. J. Mol. Biol. 320, 277-291.</Citation>
</Reference>
<Reference>
<Citation>Ochoa, W.F., Garcia-Garcia, J., Fita, I., Corbalan-Garcia, S., Verdaguer, N. and Gomez-Fernandez, J.C. (2001) Structure of the C2 domain from novel protein kinase Cepsilon. A membrane binding model for Ca(2+)-independent C2 domains. J. Mol. Biol. 311, 837-849.</Citation>
</Reference>
<Reference>
<Citation>Ohki, S., Duzgunes, N. and Leonards, K. (1982) Phospholipid vesicle aggregation: effect of monovalent and divalent ions. Biochemistry, 21, 2127-2133.</Citation>
</Reference>
<Reference>
<Citation>Pannu, N.S., Murshudov, G.N., Dodson, E.J. and Read, R.J. (1998) Incorporation of prior phase information strengthens maximum-likelihood structure refinement. Acta Crystallogr. D Biol. Crystallogr. 54, 1285-1294.</Citation>
</Reference>
<Reference>
<Citation>Parker, P.J., Coussens, L., Totty, N., Rhee, L., Young, S., Chen, E., Stabel, S., Waterfield, M.D. and Ullrich, A. (1986) The complete primary structure of protein kinase C-the major phorbol ester receptor. Science, 233, 853-859.</Citation>
</Reference>
<Reference>
<Citation>Perestenko, P.V., Pooler, A.M., Noorbakhshnia, M., Gray, A., Bauccio, C. and Jeffrey McIlhinney, R.A. (2010) Copines-1, -2, -3, -6 and -7 show different calcium-dependent intracellular membrane translocation and targeting. FEBS J. 277, 5174-5189.</Citation>
</Reference>
<Reference>
<Citation>Pronk, S., Pall, S., Schulz, R. et al. (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics, 29, 845-854.</Citation>
</Reference>
<Reference>
<Citation>Qu, A. and Leahy, D.J. (1996) The role of the divalent cation in the structure of the I domain from the CD11a/CD18 integrin. Structure 4, 931-942.</Citation>
</Reference>
<Reference>
<Citation>Rizo, J. and Südhof, T.C. (1998) C2-domains, structure and function of a universal Ca2+-binding domain. J. Biol. Chem. 273, 15 879-15 882.</Citation>
</Reference>
<Reference>
<Citation>Sakthivel, K.M. and Prabhu, V.V. (2017) Copine 3 as a novel potential drug target for non-small-cell lung carcinoma. J. Environ. Pathol. Tox. 36, 107-112.</Citation>
</Reference>
<Reference>
<Citation>Shin, O.H., Lu, J., Rhee, J.S. et al. (2010) Munc13 C2B domain is an activity-dependent Ca2+ regulator of synaptic exocytosis. Nat. Struct. Mol. Biol. 17, 280-288.</Citation>
</Reference>
<Reference>
<Citation>Shirataki, H., Kaibuchi, K., Sakoda, T., Kishida, S., Yamaguchi, T., Wada, K., Miyazaki, M. and Takai, Y. (1993) Rabphilin-3a, a putative target protein for Smg P25a Rab3a P25 small Gtp-binding protein related to synaptotagmin. Mol. Cell Biol. 13, 2061-2068.</Citation>
</Reference>
<Reference>
<Citation>Smith, T.S., Pineda, J.M., Donaghy, A.C. and Damer, C.K. (2010) Copine A plays a role in the differentiation of stalk cells and the initiation of culmination in Dictyostelium development. BMC Dev. Biol. 10, 59.</Citation>
</Reference>
<Reference>
<Citation>Sporny, M., Guez-Haddad, J., Waterman, D.G., Isupov, M.N. and Opatowsky, Y. (2016) Molecular symmetry-constrained systematic search approach to structure solution of the coiled-coil SRGAP2 F-BARx domain. Acta Crystallogr. D Struct. Biol. 72, 1241-1253.</Citation>
</Reference>
<Reference>
<Citation>Sun, B., Li, Y., Zhou, Y., Ng, T.K., Zhao, C., Gan, Q., Gu, X. and Xiang, J. (2019) Circulating exosomal CPNE3 as a diagnostic and prognostic biomarker for colorectal cancer. J. Cell Physiol. 234, 1416-1425.</Citation>
</Reference>
<Reference>
<Citation>Sutton, R.B., Ernst, J.A. and Brunger, A.T. (1999) Crystal structure of the cytosolic C2a-C2b domains of Synaptotagmin III. J. Cell. Biol. 147, 589-598.</Citation>
</Reference>
<Reference>
<Citation>Terwilliger, T.C., Grosse-Kunstleve, R.W., Afonine, P.V., Moriarty, N.W., Zwart, P.H., Hung, L.W., Read, R.J. and Adams, P.D. (2008) Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallogr. D Biol. Crystallogr. 64, 61-69.</Citation>
</Reference>
<Reference>
<Citation>Tomsig, J.L. and Creutz, C.E. (2000) Biochemical characterization of copine: a ubiquitous Ca2+-dependent, phospholipid-binding protein. Biochemistry, 39, 16 163-16 175.</Citation>
</Reference>
<Reference>
<Citation>Tuckwell, D. (1999) Evolution of von Willebrand factor A (VWA) domains. Biochem. Soc. Trans. 27, 835-840.</Citation>
</Reference>
<Reference>
<Citation>Umeda, S., Kanda, M., Koike, M. et al. (2018) Copine 5 expression predicts prognosis following curative resection of esophageal squamous cell carcinoma. Oncol. Rep. 40, 3772-3780.</Citation>
</Reference>
<Reference>
<Citation>Vagin, A. and Teplyakov, A. (2010) Molecular replacement with MOLREP. Acta Crystallogr. D Biol. Crystallogr. 66, 22-25.</Citation>
</Reference>
<Reference>
<Citation>Vagin, A.A. and Isupov, M.N. (2001) Spherically averaged phased translation function and its application to the search for molecules and fragments in electron-density maps. Acta Crystallogr. D Biol. Crystallogr. 57, 1451-1456.</Citation>
</Reference>
<Reference>
<Citation>Verdaguer, N., Corbalan-Garcia, S., Ochoa, W.F., Fita, I. and Gomez-Fernandez, J.C. (1999) Ca(2+) bridges the C2 membrane-binding domain of protein kinase Calpha directly to phosphatidylserine. EMBO J. 18, 6329-6338.</Citation>
</Reference>
<Reference>
<Citation>Wang, Z., Meng, P., Zhang, X., Ren, D. and Yang, S. (2011) BON1 interacts with the protein kinases BIR1 and BAK1 in modulation of temperature-dependent plant growth and cell death in Arabidopsis. Plant J. 67, 1081-1093.</Citation>
</Reference>
<Reference>
<Citation>Whittaker, C.A. and Hynes, R.O. (2002) Distribution and evolution of von Willebrand/integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere. Mol. Biol. Cell, 13, 3369-3387.</Citation>
</Reference>
<Reference>
<Citation>Winn, M.D., Ballard, C.C., Cowtan, K.D. et al. (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235-242.</Citation>
</Reference>
<Reference>
<Citation>Yang, H., Li, Y. and Hua, J. (2006a) The C2 domain protein BAP1 negatively regulates defense responses in Arabidopsis. Plant J. 48, 238-248.</Citation>
</Reference>
<Reference>
<Citation>Yang, H., Yang, S., Li, Y. and Hua, J. (2007) The Arabidopsis BAP1 and BAP2 genes are general inhibitors of programmed cell death. Plant Physiol. 145, 135-146.</Citation>
</Reference>
<Reference>
<Citation>Yang, S., Yang, H., Grisafi, P., Sanchatjate, S., Fink, G.R., Sun, Q. and Hua, J. (2006b) The BON/CPN gene family represses cell death and promotes cell growth in Arabidopsis. Plant J. 45, 166-179.</Citation>
</Reference>
<Reference>
<Citation>Yin, X., Zou, B., Hong, X. et al. (2018) Rice copine genes OsBON1 and OsBON3 function as suppressors of broad-spectrum disease resistance. Plant Biotechnol. J. 16, 1476-1487.</Citation>
</Reference>
<Reference>
<Citation>Yu, J.W. and Lemmon, M.A. (2001) All phox homology (PX) domains from Saccharomyces cerevisiae specifically recognize phosphatidylinositol 3-phosphate. J. Biol. Chem. 276, 44 179-44 184.</Citation>
</Reference>
<Reference>
<Citation>Zou, B., Ding, Y., Liu, H. and Hua, J. (2018) Silencing of copine genes confers common wheat enhanced resistance to powdery mildew. Mol. Plant Pathol. 19, 1343-1352.</Citation>
</Reference>
<Reference>
<Citation>Zou, B., Hong, X., Ding, Y., Wang, X., Liu, H. and Hua, J. (2016) Identification and analysis of copine/BONZAI proteins among evolutionarily diverse plant species. Genome, 59, 565-573.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Wang, Qianchao" sort="Wang, Qianchao" uniqKey="Wang Q" first="Qianchao" last="Wang">Qianchao Wang</name>
</noRegion>
<name sortKey="Chen, Lifei" sort="Chen, Lifei" uniqKey="Chen L" first="Lifei" last="Chen">Lifei Chen</name>
<name sortKey="Chen, Yayu" sort="Chen, Yayu" uniqKey="Chen Y" first="Yayu" last="Chen">Yayu Chen</name>
<name sortKey="Jiang, Meiqin" sort="Jiang, Meiqin" uniqKey="Jiang M" first="Meiqin" last="Jiang">Meiqin Jiang</name>
<name sortKey="Jiang, Meiqin" sort="Jiang, Meiqin" uniqKey="Jiang M" first="Meiqin" last="Jiang">Meiqin Jiang</name>
<name sortKey="Li, Qi" sort="Li, Qi" uniqKey="Li Q" first="Qi" last="Li">Qi Li</name>
<name sortKey="Sun, Lifang" sort="Sun, Lifang" uniqKey="Sun L" first="Lifang" last="Sun">Lifang Sun</name>
<name sortKey="Wang, Qianchao" sort="Wang, Qianchao" uniqKey="Wang Q" first="Qianchao" last="Wang">Qianchao Wang</name>
<name sortKey="Wang, Qin" sort="Wang, Qin" uniqKey="Wang Q" first="Qin" last="Wang">Qin Wang</name>
<name sortKey="Wang, Qin" sort="Wang, Qin" uniqKey="Wang Q" first="Qin" last="Wang">Qin Wang</name>
<name sortKey="Wu, Xiuling" sort="Wu, Xiuling" uniqKey="Wu X" first="Xiuling" last="Wu">Xiuling Wu</name>
<name sortKey="Wu, Xiuling" sort="Wu, Xiuling" uniqKey="Wu X" first="Xiuling" last="Wu">Xiuling Wu</name>
<name sortKey="Wu, Yunkun" sort="Wu, Yunkun" uniqKey="Wu Y" first="Yunkun" last="Wu">Yunkun Wu</name>
<name sortKey="Yang, Wendi" sort="Yang, Wendi" uniqKey="Yang W" first="Wendi" last="Yang">Wendi Yang</name>
</country>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Isupov, Michail N" sort="Isupov, Michail N" uniqKey="Isupov M" first="Michail N" last="Isupov">Michail N. Isupov</name>
</noRegion>
<name sortKey="Littlechild, Jennifer A" sort="Littlechild, Jennifer A" uniqKey="Littlechild J" first="Jennifer A" last="Littlechild">Jennifer A. Littlechild</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantImRecepV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000025 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000025 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantImRecepV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32369638
   |texte=   The crystal structure of Arabidopsis BON1 provides insights into the copine protein family.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32369638" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantImRecepV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:33:18 2020. Site generation: Sat Nov 21 12:33:47 2020